CALL FOR PAPERS Cellular Circadian Rhythms Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice
نویسندگان
چکیده
Shavlakadze T, Anwari T, Soffe Z, Cozens G, Mark PJ, Gondro C, Grounds MD. Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice. Am J Physiol Cell Physiol 305: C26–C35, 2013. First published April 17, 2013; doi:10.1152/ajpcell.00027.2013.—Circadian rhythms and metabolism are tightly integrated, and rhythmic expression of metabolic factors is common in homeostatic processes. We measured the temporal changes in the expression of myogenic regulatory factors and expression and activity level of molecules involved in protein metabolism in skeletal muscles and livers in mice and examined the impact of fasting. Tissues were collected over 24 h (at zeitgeber times ZT1, ZT5, ZT9, ZT13, ZT17, ZT21, and ZT1 the following day) from adult male C57Bl/6J mice that had been either freely fed or fasted for 24 h. In skeletal muscle, there was a robust rise in the mRNA expression of the myogenic regulatory factors MyoD and myogenin during dark hours which was strongly suppressed by fasting. Circadian pattern was observed for mRNA of MuRF1, Akt1, and ribosomal protein S6 in muscles in fed and fasted mice and for Fbxo32 in fed mice. Activity (phosphorylation) levels of Akt(Ser473) displayed temporal regulation in fasted (but not fed) mice and were high at ZT9. Fasting caused significant reductions in phosphorylation for both Akt and S6 in muscles, indicative of inactivation. Hepatic phosphorylated Akt(Ser473) and S6(Ser235/236) proteins did not exhibit daily rhythms. Fasting significantly reduced hepatic Akt(473) phosphorylation compared with fed levels, although (unlike in muscle) it did not affect S6(Ser235/236) phosphorylation. This in vivo circadian study addresses for the first time the signaling activities of key molecules related to protein turnover and their possible cross-regulation of expression of genes related to protein degradation.
منابع مشابه
Impact of fasting on the rhythmic expression of myogenic and metabolic factors in skeletal muscle of adult mice.
Circadian rhythms and metabolism are tightly integrated, and rhythmic expression of metabolic factors is common in homeostatic processes. We measured the temporal changes in the expression of myogenic regulatory factors and expression and activity level of molecules involved in protein metabolism in skeletal muscles and livers in mice and examined the impact of fasting. Tissues were collected o...
متن کاملEffect of Time of Aerobic Exercise in the Light-dark Cycle on Glycemic Control, SIRT1 Protein Expression, and NAD+/NADH Ratio in Skeletal Muscle of Type 2 Diabetes Model Mice
Introduction: Mitochondrial function is regulated by the dark-light cycle under physiological and pathological conditions. Time-dependent exercise interventions may affect metabolic health in diabetic patients by regulating hyperglycemia. However, limited data are available about the correlation between the time of exercise and the regulation of muscle circadian rhythm in diabetes conditions. T...
متن کاملMetabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues.
The role of peripheral vs. central circadian rhythms and Clock in the maintenance of metabolic homeostasis and with aging was examined by using Clock(Delta19)+MEL mice. These have preserved suprachiasmatic nucleus and pineal gland rhythmicity but arrhythmic Clock gene expression in the liver and skeletal muscle. Clock(Delta19)+MEL mice showed fasting hypoglycemia in young-adult males, fasting h...
متن کاملIdentification of the circadian transcriptome in adult mouse skeletal muscle.
Circadian rhythms are approximate 24-h behavioral and physiological cycles that function to prepare an organism for daily environmental changes. The basic clock mechanism is a network of transcriptional-translational feedback loops that drive rhythmic expression of genes over a 24-h period. The objectives of this study were to identify transcripts with a circadian pattern of expression in adult...
متن کاملThe Combined Effect of High-Intensity Interval Training and Metformin on Gene Expression of Myogenin and Myostatin in Skeletal Muscle of Type 2 Diabetic Mice
Background: Myogenin (MyoG) and Myostatin (Mstn) play role in muscle growth and wasting, respectively. The present study aimed to investigate the combined effect of High-intensity Interval Training (HIIT) and Metformin drug (Metf) on gene expression of MyoG and Mstn in skeletal muscle of type 2 diabetic mice. Methods: 25 mice (C57BL/6) were assigned to two groups, including 1) Control © (n=5),...
متن کامل